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Table 1. Solids formed 
arranged by zone axes 

Abstract 

There are four regular cylindrical solids, comprising 
the symmetrical intersections of three, four, six and N hkl Cyclic Permutations Figure no. 
ten cylinders of equal radius; two quasi-regular solids, 1 100 3 2 
six and 15; and their duals, seven and 16 cylinders 2 110 6 4 

3 111 4 3 
respectively. There are further solids with cubic crys- 4 200 = 100 
tal symmetry formed by the intersection of six, 12 or 5 210 6 12 7, 10 
24 cylinders with axes along (hkl) directions; as well 6 211 12 12 
as combinations of forms. Their volumes are indepen- 7 - -  8 2 2 0 =  110 

dent of 7r and are equal to ½ x surface area x radius. 9 221 12 14 
9 300 = 100 Possible applications to the geometry of laser fusion lo 310 6 12 6,9 

and to crystal dissolution morphology are briefly con- 11 311 12 13 
sidered. 12 222= 111 

13 320 6 12 8, 11 
14 321 12 24 15, 16 
15 - -  
16 400 = 100 1. Introduction 

Intersections of two cylinders are found in a variety 
of situations: where pipes of circular cross section 
meet or where the barrel vaulting of Norman or 
Romanesque architecture intersects in a cross vault. 
Here larger numbers of intersecting equi-radial cylin- 
ders are considered, which display cubic crystal sym- 
metry. The crystallographic axes available and the 
resulting shapes are discussed in § 2. An alternative 
description of symmetric axes is given in § 3, by 
considering the body diagonals of regular and less- 
regular solids. The surface areas and volumes of the 
solids are derived in § 4, and models and possible 
applications are considered in §§ 5 and 6. 

2. Crystallographic axes and resulting shapes 

2.1. Systems of axes with cubic crystal symmetry 

Consider zone axes of crystals with cubic symmetry. 
In Table 1 the zone-axis symbols (hkl) are listed in 
order of increasing N = h2+ k2+ 12. For example, 
there are three (100) axes: [100], [010] and [001]. 
(200) axes are equivalent to (100), and so on. For 
(210) axes, an example of h # k and 7 = 0, one may 
take all 12 permutations, or just the six which preserve 
the cyclic order of 2, 1 and 0. (The anti-cyclic order 
will give the same solid formed by intersecting cylin- 
ders, but in the opposite setting.) The same is true 
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by intersecting cylinders 

for (310) and (320) axes. For (211), (221) and (311), 
in which two indices are the same and no index is 
zero, there are 12 permutations. For non-zero indices 
which are all different, e.g. (321), there are 12 cyclic 
permutations, and 24 if all permutations are allowed. 

In Table 1, gaps occur for those numbers N which 
cannot be expressed as the sum of three squares: 7, 
15, 23, 28, 3 1 , . . . , 4 " ( 8 n + 7 ) ,  where m and n are 
positive integers or zero (Davenport,  1968). [The 
alternative expression p2 (8q -1 ) ,  in which p and q 
are positive integers, generates the same set of num- 
bers.] The table may of course be extended. 

24 is the largest number of identical axes displaying 
cubic crystal symmetry (since the order of the 
holosymmetric cubic class is 48). Certain larger num- 
bers may of course be achieved by combining several 
different systems of axes, the numbers being additions 
(or multiples) of 6, 12 or 24, together with the possibil- 
ity of the single addition of 3 or 4, or both (i.e. 7). 

2.2. Cylindrical solids with cubic crystal symmetry 

The minimum number of intersecting cylinders 
needed for cubic symmetry is three and their axes, 
lying along the (100) directions, are mutually 
orthogonal. Fig. 1 shows a perspective view of the 
resulting shape. Here the axes of the three cylinders 
are represented by chain-dotted lines and the outlines 
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t 
of two of the cylinders have been drawn. The horizon- 
tal straight lines which shade two of the facets of the 
intersection solid are generators of one of the cylin- 
ders. Two more facets, at the rear of the diagram, 
belong to this cylinder. There are 12 cylindrical facets 
in all, and if tangent planes were constructed touching 
them in the generators joining the threefold vertices, 
a rhombic dodecahedron would result. Fig. 2 shows 
orthographic projections, drawn by computer, along 
the [100], [110], [111] and [321] directions. 

There are four (111) directions, and taking these 
as axes for intersecting cylinders, the solid of 24 facets 
depicted in Fig. 3 results. The solid formed by the 
six (110) axes is shown in Fig. 4. Note the circular 
cross sections in the [ 100], [ 111 ] and [ 110] projections 
of Figs. 2, 3 and 4 respectively, and the relatively 
sharp vertices of the other views, especially in Figs. 
2 and 3 where the vertices protrude to a distance 
(3/2) 1/2 (-~ 1.225) from the centre relative to cylinders 
of unit radius. Fig. 5 shows the intersection solid 
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Fig. 3. Four (111) cylinders: axes joining opposite vertices of a 
cube. 

J 

i 
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Fig. 1. Perspective view of the solid common to three equi-radial 
cylinders, whose axes are mutually orthogonal. 

Fig. 4. Six (110) cylinders: axes joining opposite vertices of a 
cuboctahedron. 

) 

) 
c (d) 

Fig. 2. The intersection of three equal ~100) cylinders whose axes 
join the opposite vertices of an oetahedron. Views along (a) Fig. 5. Seven (100)+(111) cylinders: joining opposite vertices of 
[100], (b) [110], (c) [111] and (d) [321]. a rhombic dodecahedron. 
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formed by seven cylinders: three (100) and four (111). 
It is thus a combination of forms and the figure clearly 
shows the circular cross sections looking along [100] 
and [111]. 

Other combinations of six cylinders are shown in 
Figs. 6, 7 and 8. These show the solids formed by the 
cyclic permutations of (310), (210) and (320) in the 
progression of k / h  from ½ through ½ to 2. The pro- 
gression may be seen in the solids. The solid of Fig. 
17 (discussed later) with pentad symmetry belongs 
in this series with k / h  =0.618. The corresponding 

complete permutations of (310), (210) and (320) are 
shown in Figs. 9, 10 and 11 respectively. 

There are certain similarities amongst Figs. 12 
(211), 13 (311) and 14 (221), in each of which two 
indices are the same. The most general case, with all 
indices different and non-zero, exemplified by (321), 
is shown for cyclic permutations in Fig. 15 and for 
all permutations in Fig. 16:12 and 24 cylinders respec- 
tively. The surface of the latter is divided into 48 
'triangular' regions each containing 19 facets, giving 
a total of 912 in all. 

i ~, \, 
/ t  / i ~\ " 
i ,  - - \  " t 

Fig. 6. Six cylinders: (310) cyclic permutations. View along [321]. 

Fig. 7. Six cylinders: (210) cyclic. 

, , .  

Fig. li). 12 cylinders: (210) all permutations. 

Fig. 11. 12 cylinders: (320) all permutations. 

/ _ ~ _ -  - ~ ' - - -  

Fig. 8. Six cylinders: (320) cyclic. 
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Fig. 12. 12 cylinders: (211). 

S T / s  / . . \ 

,, ~ . _ - - - _ ~ . - .  

Fig. 9. 12 cylinders: (310) all permutations. Fig. 13. 12 cylinders: (311). 
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The shapes derived from cyclic permutations of 
(hkl), h ~ k ~ l, possess only (2/m)3 symmetry_whilst 
for all permutations, holosymmetric (4/ m)3(2/ m) 
morphologies result. 

3. Regular and quasi-regular solids 

As an alternative description for symmetric axes, the 
body diagonals of the various regular and less-regular 
solids may be considered. There are five regular con- 
vex (Platonic) solids, with the property that all faces 
are equivalent and so also are all the vertices. Of these 
the cube and octahedron have already been con- 
sidered: the body diagonals of the octahedron are the 
three (100) directions (the cylindrical solid is shown 
in Fig. 2), and the body diagonals of the cube are the 
four (111) directions (Fig. 3). The tetrahedron is non- 
centrosymmetric and in any case the joins from the 
centre to its four vertices give the same four (111) 
directions as for the cube. The icosahedron, which 

Fig. 14. 12 cylinders: (221). 

Fig. 15. 12 cylinders: (321) cyclic permutations. 

Fig. 16. 24 cylinders: (321) all permutations. 

has 12 vertices, gives rise to six cylinder axes, whilst 
the (pentagonal) dodecahedron of 20 vertices gives 
a solid formed from ten cylinders. These are shown 
in Figs. 17 and 18 respectively. [The non-convex 
regular (Kepler-Poinsot) polyhedra also have these 
body diagonals.] Thus there are four regular cylin- 
drical solids. 

There are several classes of less-regular solids. [For 
a discussion of these see Fejes T6th (1964).] The 
Archimedean solids have equivalent vertices but 
differing regular polygonal faces. Their duals (the 
Catalan solids) have equivalent faces but differing 
vertices. For example, the cuboctahedron has 12 ver- 
tices, six square faces and eight triangular ones. Its 
dual, the rhombic dodecahedron, has 12 rhombic 
faces, six fourfold vertices and eight threefold ones. 

(a) (b) 

(c) (d) 
Fig. 17. Six cylinders: axes joining opposite vertices of an icosahe- 
dron. Views along (a) [100], (b) [110], (c) [111] and (d) [321]. 

Fig. 18. Ten cylinders: axes joining opposite vertices of a (pen- 
tagonal) dodecahedron. 
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(Both solids have 24 edges.) The diagonals of the 
cuboctahedron are the six (110) directions; the cylin- 
drical solid derived from these has already been con- 
sidered and is shown in Fig. 4. The body diagonals 
of the rhombic dodecahedron comprise the three 
(100) and four (111) directions: the combination of 
forms whose cylindrical solid is shown in Fig. 5. 

The cuboctahedron is a combination of cube and 
octahedron, and in a similar manner the 
icosidodecahedron is a combination of icosahedron 
and dodecahedron. It has 30 vertices and the corre- 
sponding cylindrical solid of 15 axes is shown in Fig. 
19. The dual of the icosidodecahedron is the rhombic 
triacontahedron. This has (12 + 20 = ) 32 vertices and 
the solid of 16 cylinders is shown in Fig. 20. From 
the Archimedean solids, Fejes T6th (1964) selects 
those with equivalent edges, the cuboctahedron and 
icosidodecahedron, and calls them quasi-regular. 
Robertson & Carter (1970) have also noted their 
importance. The regular and quasi-regular solids with 
the numbers of their body diagonals are listed in 
Table 2, arranged as pairs of dual solids. 

Polyhedra listed in column A each have six diads, 
four triads and three tetrad axes of rotational sym- 
metry, and also nine mirror planes (i.e. they have full 
cubic symmetry in the crystallographic sense). Those 
in column B have 15 diads, ten triads, six pentads 
and 15 mirror planes (i.e. full icosahedral symmetry). 
Such symmetries are also exhibited by the solids 
formed by intersecting cylinders whose axes are the 
body diagonals of these polyhedra. 

For solids of group A (those with tetrad axes of 
symmetry) the cylinder axes are as follows: Fig. 2 
three axes: (100); Fig. 3 four axes: (111); Fig. 4 six 
axes: Cll0); Fig. 5 seven axes: (100)+(111). 

For solids of group B (with pentad axes) the 
'golden ratio' r is required. It satisfies the quadratic 
equation ~ . 2 _ r _ l = 0 ,  and takes the value (1+ 
,/5)/2 = 1.61803. Fig. 17 six axes: cyclic permutations 

Table 2. Regular and quasi-regular solids arranged as 

Regular 

Quasi-regular 

pairs of  duals 

A B 
Octahedron: 3 Icosahedron: 6 
Cube: 4 Dodecahedron: 10 
Cuboctahedron: 6 Icosidodecahedron: 15 
Rhombic dodeca- Rhombic triaconta- 
hedron: 7 hedron: 16 

of (r 1 0); Fig. 18 ten axes: (l l l) + cyclic permuta- 
tions of (~ '-1 r0);  Fig. 19 15 axes: (100)+cyclic 
permutations of ( ~ ' r + l  1); Fig. 20 16 axes: those of 
Figs. 17 and 18 together. Fig. 17 belongs in the series 
(Figs. 6, 7 and 8) of cyclic permutations of (hkO) 
discussed above. 

One could continue the discussion with all the 
Archimedean solids and their duals, and the infinite 
classes of prisms and anti-prisms. Suffice it to say that 
a good number of Archimedean solids have already 
been considered in § 2.2. The joins from the centre 
to the vertices of the truncated tetrahedron are the 
twelve (311) directions and the corresponding cylin- 
drical solid is shown in Fig. 13. The body diagonals 
of the truncated octahedron are the 12 (210) direc- 
tions: see Fig. 10. The truncated cube (with regular 
octagonal faces) has 12 body diagonals (h 11) and the 
diagonals of the rhombicuboctahedron are the 12 
(hhl) directions, where h = , / 2 - 1  (-~0.414) in each 
case. The great rhombicuboctahedron (or truncated 
cuboctahedron), with regular octagonal and 
hexagonal as well as square faces, has 24 body 
diagonals of (hkl) type, where h = 1 +2x/2 and k = 
1 +,/2: again irrational indices. 

4. Volumes of  the solids 

The volumes of these solids, expressed in terms of 
their radius R (or diameter D) do not contain zr! 
The intersection of two equal cylinders at right angles 

, o ~ - 4 - - -  

Fig. 19. 15 cylinders: derived from the icosidodecahedron. Fig. 20. 16 cylinders: derived from the rhombic triacontahedron. 
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was known to Archimedes (ca. 250 BC; see also Gard- 
ner, 1962), who considered the circles inscribed 
within the square sections of the solid. The areas of 
the squares (4r 2) are larger than those of the circles 
(~rr 2) by the constant ratio 4 / ~  and as the circles 
enclose a sphere of volume 47rR3/3, the volume of 
the solid common to both cylinders is larger than this 
by the same factor: (4/~r) x47rR3/3 = 16R3/3 = 
2D3/3: a strangely simple result. 

Hubbell (1965) has considered the general case of 
the volume common to two cylinders of different radii 
intersecting at the arbitrary angle /3, a much more 
complicated situation with the volume involving 
either hypergeometric series or elliptic integrals. For 
equal radii, however, the volume is simply 
16R3/(3 sin fl). 

The volume of the symmetrical solid common to 
three (100) cylinders lacks a factor of zr (Moore, 
1973), and this is also true for the solids formed by 
four (111) and by six (110) intersecting cylinders 
(Moore, 1974). This apparently surprising result may 
be explained by considering each solid as being made 
up of a number of cylindrical sectors with vertices 
O (0,0,0) .  A (R, 0,0),  B (R, 0,0), C (R, O,Z), 
expressed in cylindrical polar coordinates: see Fig. 
21. Each cylindrical facet of the solid may be divided 
into several cylindrical triangles such as ABC: AB is 
a circular arc of radius R in the plane OAB perpen- 
dicular to the axis of the cylinder, BC is a straight 
line parallel to this axis (i.e. it is part of a generator 
of the cylinder), and COA is a plane intersecting the 
cylindrical surface ;n the elliptical arc CA. 

The height h of the elementary strip X Y  compared 
with that of BC is h / Z  = (R sin O)/(R sin O), where 
0 is the angle XOA and O the angle BOA; giving 
h -- Z(sin 0/s in  O). The area A of the surface ABC is 

19 

h(R d0) = ( RZ/ s i n  O ) ( 1 - c o s  O) 
0 

= RZ(cosec O -  cot O). 

The volume V of O A B C = ~  ½gh(g dO)=Ag/3.  
The result V =  AR/3,  true for cylindrical sectors 

as well as for complete cylindrical solids, relies on 
the fundamental formula for the volume of a pyramid 

A 

• C 

~ "  z 

X 
Fig. 21. Cylindrical triangle ABC. 

or cone being ] x 'base area' x 'height'. This is related 
to Gauss's theorem for the position vector r, since 
div r = 3 and ~ div r d V = 3 V = ~ r .  dS = 'base 
area' x 'height'.  In the limiting case of infinitely many 
cylinders intersecting in a sphere, the volume is 
(4~rR2)R/3: the familiar 47rR3. 

For the example of the solid common to the three 
(100) cylinders, each of the 12 rhombic facets may 
be divided into four equal cylindrical triangles, one 
of which has vertices (R, 0, 0), (R, 7r/4, 0) and 
(R, 17"/4, R/2). Thus in the formula O = 7r/4, Z = 
R/x/2, and the total volume is 

(12 x 4 x IR2) (x/2 - 1)R/x/2 = D 3 ( 2 -  x/2). 

In the same way, V(ll l)=(3/~/2)(2-x/3)D 3 and 
V( l10 )=2(3+2~ /3 -4x /2 )D  3, since the kite-shaped 
facets may also be subdivided into cylindrical trian- 
gles of the required form. Expressed in decimals the 
volumes are 0-586D 3, 0.568D 3 and 0-538D 3 respec- 
tively. As the number of intersecting cylinders 
increases, the volumes of the solids thus formed 
quickly converge to the volume of a sphere, "n'D3/6 = 
0.524D 3. 

5 .  M o d e l s  

Complete cylindrical surfaces are easy to make by 
lathe. Machining accuracy, however, has to be great 
if a good result is to be obtained for the shape common 
to several intersecting cylinders. For example, if the 
perpendicular axes of two cylinders of 1 cm radius 
do not intersect in a mathematical point but miss one 
another by 0.001 cm, the error at the surface is a 
noticeable 0.1 cm. 

The chord y cut off from the surface of the first 
cylinder by the second, and the separation x of the 
axes, are related by the semi-angle 0 subtended at 
the centre: see Fig. 22 and Table 3. 

x = 1 - cos 0, 

y = 2 sin 0 = 2[x(2 - x)] '/2. 

- 7 -  

1 

1 
Fig. 22. The amount y cut off from a cylinder of unit radius by 

another at right angles, x measures the distance between the 
axes of the cylinders. 
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Table 3. Relationship between x and y for cylinders o f  
unit radius 

X 0 0-000001 0.00001 0.0001 0.001 0"01 0-1 1 
y 0 0-003 0"009 0"03 O" 1 0"3 0"9 2 

6. Applications 

6.1. The geometry of  laser fusion 

When apparatus is designed for laser fusion, con- 
sideration is given to arranging several pairs of 
inward-pointing lasers so that the axes of their beams 
intersect at a point. If the laser beams are assumed 
to have circular cross sections, the volume illuminated 
by all the lasers will be the intersection of right circular 
cylinders. For reasons of thermal stability of the 
excited plasma at the centre, the lasers are usually 
arranged in a symmetrical fashion. Here various poss- 
ible arrangements have been considered. 

6.2. Dissolution of  cubic crystals 

The morphologies of partially dissolved crystals 
are frequently rounded (Heimann, 1975), but edges 
and vertices may still be well defined. A dissolution 
shape depends on the starting conditions and con- 
tinuously changes as dissolution proceeds (Frank, 
1972). Even if the chamfering of edges may be 
approximated by parts of cylindrical surfaces, which 
eventually join with others from parallel edges to 
form completed cylinders, it would be unusual for a 
dissolving crystal if the axes of such cylinders passed 
through a single point. The edges grouped around a 
given symmetry axis of a dissolved crystal often fail 
to meet on the axis as they should in an ideally 
symmetric body; and in etching experiments surface 
roughening and etch pitting often mask any underly- 

ing ideal morphology. Notwithstanding these mis- 
givings, there are rare occasions when some of the 
solids depicted here resemble actual dissolution 
bodies. For example, Fig. 2 bears a similarity to 
dissolved crystals of the diamond structure [Ellis, 
1954; Batterman, 1957 (see Fig. 11, p. 1239); Moore 
& Lang, 1974]. 

7. Concluding remarks 

All the regular and quasi-regular solids for intersect- 
ing cylinders have been drawn, we believe for the 
first time. They may have relevance in certain applica- 
tions, but in any case they have a beauty of their own. 

We thank Professor Sir Charles Frank FRS and the 
referees for their constructive comments during the 
preparation of this manuscript. 
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Abstract 

Contrary to the recommendation in some textbooks, 
enhanced reflexions should not be divided by the 
enhancement factor in forming general averages for 
normalization. The intensity required for the 
enhancement is drawn from the adjacent reflexions 
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in the reciprocal lattice, and the correct average 
intensity is obtained by including all reflexions at 
their observed intensity. Weights based on the number 
of reflexions of different types intercepted by the 
spherical shell that defines those included in the 
average may be appropriate. 
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